Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Technol ; 57(14): 5739-5750, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2295941

ABSTRACT

We have been effectively protected by disposable propylene face masks during the COVID-19 pandemic; however, they may pose health risks due to the release of fine particles and chemicals. We measured micro/nanoparticles and organic chemicals in disposable medical masks, surgical masks, and (K)N95 respirators. In the breathing-simulation experiment, no notable differences were found in the total number of particles among mask types or between breathing intensities. However, when considering subranges, <2.5 µm particles accounted for ∼90% of the total number of micro/nanoparticles. GC-HRMS-based suspect screening tentatively revealed 79 (semi)volatile organic compounds in masks, with 18 being detected in ≥80% of samples and 44 in ≤20% of samples. Three synthetic phenolic antioxidants were quantified, and AO168 reached a median concentration of 2968 ng/g. By screening particles collected from bulk mask fabrics, we detected 18 chemicals, including four commonly detected in masks, suggesting chemical partition between the particles and the fabric fibers and chemical exposure via particle inhalation. These particles and chemicals are believed to originate from raw materials, intentionally and nonintentionally added substances in mask production, and their transformation products. This study highlights the need to study the long-term health risks associated with mask wearing and raises concerns over mask quality control.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/prevention & control , Masks , Polypropylenes , Pandemics/prevention & control
2.
J Thorac Dis ; 13(11): 6217-6229, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1551991

ABSTRACT

Corticosteroids are efficacious in treating chronic rhinosinusitis (CRS), but concerns on the potential side effects remain, especially for long-term usage of systemic corticosteroids. Accumulated evidence shows that transnasal nebulization may be a reasonable solution in balancing both efficacy and safety. However, no consensus or guideline has been formulated on the use of steroid transnasal nebulization in treating CRS. The consensus is achieved through literature review and exchange of Chinese experts in Group of Otorhinolaryngology and Ophthalmology, Chinese Society of Allergy (CSA). This document covers the development, equipment, pharmacological mechanism, and evidence-based efficacy and safety, as well as the special concern of the application of steroid transnasal nebulization during the coronavirus disease (COVID-19) pandemic. The expert consensus clarifies the application of steroid transnasal nebulization in treating CRS and common comorbidities during the perioperative and postoperative periods.

3.
Nano Today ; 39: 101161, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1188914

ABSTRACT

The family of coronavirus are named for their crown shape. Encoded by the genetic material inherited from the coronavirus itself, this intrinsic well-known "viral corona" is considered an "inherited corona". After contact with mucosa or the entrance into the host, bare coronaviruses can become covered by a group of dissolved biomolecules to form one or multiple layers of biomolecules. The layers acquired from the surrounding environment are named the "acquired corona". We highlight here the possible role of the acquired corona in the pathogenesis of coronaviruses, which will generate fresh insight into the nature of various coronavirus-host interactions.

4.
Chem Soc Rev ; 50(6): 3656-3676, 2021 Mar 21.
Article in English | MEDLINE | ID: covidwho-1132110

ABSTRACT

The novel human infectious coronaviruses (CoVs) responsible for severe respiratory syndromes have raised concerns owing to the global public health emergencies they have caused repeatedly over the past two decades. However, the ongoing coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received unprecedented attention internationally. Monitoring pathogenic CoVs in environmental compartments has been proposed as a promising strategy in preventing the environmental spread and tracing of infectious diseases, but a lack of reliable and efficient detection techniques is still a significant challenge. Moreover, the lack of information regarding the monitoring methodology may pose a barrier to primary researchers. Here, we provide a systematic introduction focused on the detection of CoVs in various environmental matrices, comprehensively involving methods and techniques of sampling, pretreatment, and analysis. Furthermore, the review addresses the challenges and potential improvements in virus detection techniques for environmental surveillance.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Environmental Monitoring/methods , Pandemics , SARS-CoV-2/isolation & purification , Aerosols/analysis , COVID-19/transmission , Fomites/virology , High-Throughput Nucleotide Sequencing , Humans , Immunoassay , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sewage/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wastewater/virology
SELECTION OF CITATIONS
SEARCH DETAIL